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Spin Liquid in the Multiple-Spin Exchange Model on the Triangular Lattice: 3He on Graphite
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Using exact diagonalizations, we investigate theT  0 phase diagram of the multiple-spin exchange
(MSE) model on the triangular lattice, we find a transition separating a ferromagnetic phase from
a nonmagnetic gapped spin liquid phase. Systems far enough from the ferromagnetic transition
have a metamagnetic behavior with magnetization plateaus atmymsat  0 and 1y2. The MSE has
been proposed to describe solid3He films adsorbed onto graphite, thus we compute the MSE heat
capacity for parameters in the low density range of the 2nd layer and find a double-peak structure.
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An increasing number of experiments on3He films
have enforced the triangular lattice multiple-spin ex
change (MSE) picture of the solid second layer ([1,2], an
references therein). Following Thouless [3,4], the ma
netic properties of a 2-dimensional quantum crystal a
described in spin space by the effective Hamiltonian:

H  2
X
P

s21dsgnsPdJPP , (1)

where P is any permutation operator of the spins o
the lattice, andJP equals one half of the (positive) tun-
neling frequency associated to the exchange processP.
Whereas exchange of an even number of spins favors
tiferromagnetism, odd processes are ferromagnetic.
the triangular lattice with spin 1y2, 2- and 3-body ex-
change reduce to a Heisenberg Hamiltonian with an e
fective Jeff

2  J2 2 2J3. In 2-dimensional3He, because
of stoichiometric hindrance, the 3-body process is mu
more efficient than the 2-body one, and the effective co
pling constant is ferromagnetic. However, it was su
pected since a long time thatn-particle terms withn . 3
could not be ignored [1,5,6]. Very recently, a thoroug
analysis of susceptibility and heat capacity measureme
enabled Roger and the Grenoble group [7] to establish t
density dependence of theJ ’s and the importance of the
4-spin exchangeJ4 in a large density range of the 2nd
layer: from the 2nd layer solidification [antiferromagneti
(AF) solid] to the third layer promotion [ferromagnetic
(F) solid]. This is in accordance with recent path inte
gral Monte Carlo calculations which estimateJeff

2 yJ4 .
22 6 1, J5yJ4 . 1 6 0.5 andJ6yJ4 . 1 6 0.5 [8].

As first suggested by Roger in 1990 [9], 4-spin exchan
strongly frustrates the system. Momoi, Kubo, and Nik
have recently studied theJeff

2 -J4 model in the classical and
semiclassical (spin-wave) limits and found numerous o
dered phases: a ferromagnetic, a 4-sublattice ferrimagne
phase, 3- and 4-sublattice AF phases, and a chiral orde
phase [10,11]. Our SU(2) Schwinger-Boson analysis
the Jeff

2 -J4-J5 Hamiltonian also pointed to a rich phase
diagram with Néel as well as helicoidal phases [12].
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In the present work, exact diagonalizations results sh
that none of theseT  0 long range ordered (LRO) AF
phases survive spin-1y2 quantum fluctuations. Instead, i
the AF region, the system is a quantum spin liquid (QS
with short range spin-spin correlations, as suggested
Ishidaet al. [13] and Kuboet al. [11].

We truncate Eq. (1) to the following simplest cycli
exchange patterns:

H  Jeff
2

X
P2 1 J4

X°
P4 1 P21

4

¢
2 J5

X°
P5 1 P21

5

¢
1 J6

X°
P6 1 P21

6

¢
. (2)

The spin-1y2 permutation operators can be rewritten wi
usual spin operators (Pauli matrices):Pij  2Si .Sj 1

1y2. P1234 1 H.c. and P12345 1 H.c. (P123456 1 H.c.)
are polynoms of degree two (three) inSi .Sj [12,14].
The quantum phase diagram of this model is stud
through the analysis of the finite size scaling of the lo
energy spectra of samples subjected to various bound
conditions (twisted or periodic with different shapes).

Ferromagnetic-antiferromagnetic transition.—We first
look at theT  0 ferromagnetic-antiferromagnetic tran
sition line of Eq. (2). This line (see Fig. 1) is determine
from about 50 spectra (N  19) in theJn space, with most
points near the transition. For all cases, the ground s
is either anS  0 or an S  Ny2 state. This excludes
the possibility of auuudphase found in the classical ca
culations of Kuboet al. [11], which is ferrimagnetic and
has a total spinS  Ny4. The line whereJx , the 1yT2

coefficient of the susceptibility, vanishes stands rough
parallel to theT  0 F-AF line, inside the AF region.
The density dependence of theJn ’s proposed by Roger
et al. [7] for the second layer (see crosses in Fig. 1) lea
us to conclude that aT  0 transition to ferromagnetism
occurs atr2 . 6.8 6 0.3 nm22 whereasJx is zero at
r2 . 6.5 nm22 [7].

No Long Range Order.—The nature of the nonmag
netic or antiferromagnetic (AF) phase is a more challen
ing question. We first look for signatures of Néel lon
© 1998 The American Physical Society
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FIG. 1. Phase diagram forJeff
2 , 0. The solid line is theT 

0 transition line between ferromagnetic and antiferromagne
phases. The crosses are Rogeret al.’s results (7) for four
2nd layer densities (nm22): r

a
2  6.5 (J6yJ4 . 0.7), r

b
2  7.0,

r
c
2  7.65, and r

d
2  7.8. For b, c, and d J6yJ4 . 0.4 (the

size of the crosses may underestimate the uncertainties in
parameters). Two of the black triangles indicate the sets
coupling parameters corresponding to Figs. 2, 3, and 4. T
upper one is the point close to the frontier mentioned
the text.

range order (NLRO). NLRO is characterized on finit
systems by very stringent spectral properties [15]:
The symmetry breakings associated to the order para
ter are embodied in a family of,Na low lying lev-
els collapsing to the ground state in the thermodynam
limit (a is the number of magnetic sublattices). The
levels with definite space and SU(2) symmetries and d
namical properties should appear directly below the fi
magnon excitations. (ii) The finite-size scalings of the
levels are known. In particular, the ground-state ener
per siteEsS  0, NdyN has corrections scaling asN23y2,
the DS  1 spin gapEsS  1, Nd 2 EsS  0, Nd goes
to zero asN21. None of these prescriptions is obeye
by the MSE spectra in the “S  0 ground state” region
displayed Fig. 1, whatever the twisted or shape bound
conditions may be. Thus, we exclude any commensur
or noncommensurate NLRO.

Jeff
2 2 J4 model.—We have analyzed in detail the

Jeff
2  22, J4  1 model for nearly all possible system

from N  6 to 30 and forN  36. We noticed two
different scaling behaviors: samples withN multiple of
4 or 6 have a low ground-state energy increasing withN
whereas others samples have a high ground-state en
decreasing withN. The energies of both families merg
for N0 . 40. Our interpretation is the following:N0 is
a crossover size above which the system is not anym
sensitive to boundary conditions and this is the signatu
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of a finite length scalej 
p

N0 in the ground-state
wave function. This is supported by two facts: a fa
decay of the spin-spin correlations with distance and
nonvanishing spin gapD in the thermodynamic limit.
DS  1 gaps are plotted in Fig. 2: The two familie
of samples (squares forN multiple of 4 or 6 and stars
for others) have gaps of the order of 1 forN . 24.
An estimation of theN  ` gap is possible using the
strong correlation betweenEyN and D, the result is
D . 1.1 6 0.5 (details will be given elsewhere).

These data point to a quantum spin liquid state w
a gap of the order of 1 forJeff

2  22 and J4  1.
This gap and the sensitivity to the geometrical shap
and boundary conditions of the small samples sugges
valence-bond picture of the ground state and of the fi
triplet excitation.

Because of the strong frustration between the effect
first neighbor ferromagnetic Heisenberg term (Jeff

2 ) and
the 4-spin antiferromagnetic exchange, it is the triangu
6-spin plaquette which is the first system with a parama
netic (S  0) ground state and a significant gap. [Fo
N  24 (N  12) one can compare the spectrum of th
sample built with four (two) 6-site triangles with the spec
tra computed from other shapes. The triangle-compati
shape gives the lowest energy and the largest gap (o
ers have energies and gaps comparable with the frustra
family ones).] However, the ground-state wave functio
is not a naive tensorial product ofS  0 independent tri-
angle wave functions: such an approximation gives a ve
high ground-state energy (22.8 to be compared to24)
and largely underestimates the gap (0.4 to be compare
1). This quasiindependent triangle picture is thus dee
renormalized by resonances.

Analysis of the low lying levels in theS  0 subspace
leads to the same conclusion: The number of singl
below the first triplet level is very small (#10 all
degeneracy taken into account). As a comparison, this
very different from the Kagomé case where a continuu
of singlets state is found in the magnetic gap [16,17
Thus, this system seems a very example of a short ra
resonating valence bond state with a clear cut gap in
translationally invariant 2-dimensional spin-1y2 model.
Consequently, both the low temperature specific he

FIG. 2. Spin gap plotted as a function of 1yN for Jeff
2  22,

J4  1. The vertical bar is theN  ` extrapolation made out
of the EyN $ D correlation analysis.
1099
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and spin susceptibility are thermally activated [xsT d ,
e2DyT , CV sT d , e2DyT ]. However, the gap decrease
rapidly when approaching the AF-F transition and we a
not yet able to decide if the gap vanishes at the transiti
to ferromagnetism or before. Indeed, experimental resu
of Ishida and collaborators seem to indicate either a ve
small gap or a quantum critical behavior [13].

2nd layer heat capacity.—We compute the MSE heat
capacity forJeff

2 yJ4  22, J5yJ4  0.2, J6yJ4  0.08,
with N  16, 20, and 24 (Fig. 3) and find a clear low
temperature peak. The entropy atTyJCy

 0.5 is
.0.4N lns2d and the low temperature peak is thus likel
to remain in the thermodynamic limit. It also subsist
for a relatively large range of competingJn. Such a
low temperature peak is characteristic of different high
frustrated systems [9,18]. The high temperature peak
located at a temperature of the order ofJCy

(JCy
is the

leading coefficient of the1yT expansion of the specific
heat: Cy  9y4sJCy

yT d2 1 O s1yT3d, its expression
as a function of theJ ’s is given in [19]). The low
temperature peak height and location do not only depe
on JCy

but also on the relative values of the couplin
parameters. A better agreement between present res
and experimental results [13] is expected by a fine tuni
of the coupling parameters. Indeed, moving towards t
boundary line between AF and F phases both decrea
the gap and shifts the low temperature peak towar
lower temperature.

Low energy degrees of freedom.—To understand the
excitations responsible for this low energy peak we look
for possible common properties of low lying levels
It appears that most of these levels have a significa
projection on the subspace engendered by spin-1 diam
tilings. This subspaceE is defined by the nonorthogona
family of wave functions:

jCl 
O

d1,...,Ny4

jSd  1, Sz
d [ h21, 0, 1jl , (3)

FIG. 3. Heat capacity versus temperature for three siz
Coupling parameters areJeff

2 yJ4  22, J5yJ4  0.2, J6yJ4 
0.08. For these valuesJCy

 0.93J4 and theN  ` spin gap is
of the order ofJ4y2. Because of finite-size effects, onN  20
and24 the high temperature peak (T . JCV ) only shows up as
a shoulder.
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wherejSd  1, Sz
dl is theS  1, Sz  Sz

d state, symmet-
ric with respect to the small diagonal of thedth diamond.
For N  16 the projections of the exact low lying levels
on E range from10% to 50% for nearly all the states in-
volved in the peak (and drop under1% for higher energy
states). These numbers are very large compared with
expectation values of the projection of a randomS  0 or
S  4 wave function, which are, for the same lattice siz
of the order of1%. Since each tiling of the lattice gives
3Ny4 independent states, the entropy associated withE is
at least lns3Ny4d . 0.4N lns2d, in agreement with the low
temperature peak entropy found in our samples.

These results lead to the following picture: At hig
temperature down toT . JCy

the degrees of freedom
are essentially random spin 1y2. For T less thanJCy

,
the thermal wavelength increases and near neigh
spins behave coherently as weakly ferromagnetic entit
(pseudo spin 1). This explains the low temperature pe
At T . D (spin gap), the 4-spin exchange couplin
creates larger clusters and the system organizes itsel
a QSL.

Magnetization.—Now we apply a magnetic field and
look for the spinS of ground state (T  0 magnetiza-
tion). The large gap between the sectors of total sp
S  Smaxy2 andS  Smaxy2 1 1 indicates that exciting
one diamond to itsS  2 state costs a large energy. Thi
feature gives rise to a low temperature plateau at magn
zationm  1y2 (Fig. 3) which has also been found in th
classical variational picture by Kuboet al. [11]. (Related
phenomena have already been encountered in the Hei
berg model with Ising anisotropy [20], in the MSE mode
on the square lattice [21], on Heisenberg ladders or cha
[22,23]. An m  0 plateau has been observed in th
spin-ladder compound Cu2sC5H12N2d2Cl4 [24,25].) For
the same coupling parameters as Fig. 3, Fig. 4 shows
metamagnetic transitions atHC1 andHC2 and the magneti-
zation is completely quantized:m  0, 1y2, or 1. Thanks

FIG. 4. Magnetization versus magnetic fieldB. Exchange
parameters are those of Fig. 3. Since in3He, J4 . 2 mK and
gm  1.5 mK T21, HC1 is in the telsa range.
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to the large gaps (S  0 ! 1 andS  Ny4 ! Ny4 1 1d
these plateaus survive thermal excitations. (This, as w
as the symmetries and degeneracies of the low lying le
els of the spectra, will be discussed elsewhere in relat
with possible extension of the Lieb-Schultz-Mattis theo
rem to 2-dimensional magnets [26,27].) Close to the fe
romagnetic transition (upper black triangle of Fig. 1) bo
gaps decrease and the overall shape of the energy ve
magnetization anticipates a transition to a phase where
magnetization curve is strongly nonlinear and reminisce
of the metamagnetic transitions (see [21] about metam
netism in 3D solid3He).

In this Letter we have shown that the spin-1y2 MSE
model, in the range of parameters relevant for the descr
tion of 3He on graphite, exhibits a transition from an ant
ferromagnetic phase at low density to a ferromagnetic o
at high density. The AF phase has no Néel long range
der and is a quantum spin liquid phase. In this phase
specific heat has two peaks. The lowest one testifies
building of a QSL out of short range pseudo-spin 1. Th
picture is consistent with magnetization and heat capa
ity measurements. The microscopic arrangement of
spins may also show up as plateaus in the magnetizat
and T  0 metamagnetic transitions between zero, ha
polarized, and fully polarized phases.

We have benefited from very interesting discussio
with C. Bäuerle, H. Fukuyama, H. Godfrin, K. Kubo
M. Roger, and J. Saunders. Computations were p
formed on CRAY C94,C98 and T3E-256 at the Institu
de Développement des Recherches en Informatique S
entifique of C.N.R.S. under Contract No. 960076y964091
and on CRAY T3E-512 of the Zentralinstitut für Ange
wandte Mathematik, Forschungszentrum Jülich.
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